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Abstract The geometric and electronic structures, absorp-
tion spectra, transporting properties, chemical reactivity in-
dices and electrostatic potentials of the planar three-
coordinate organoboron compounds 1-2 and twisted refer-
ence compound Mes3B, have been investigated by
employing density functional theory (DFT) and conceptual
DFT methods to shed light on the planarity effects on the
photophysical properties and the chemical reactivity. The
results show that the planar compounds 1-2 exhibit signifi-
cantly lower HOMO level than Mes3B, owing to the stron-
ger electronic induction effect of boron centers. This feature
conspicuously induces a blue shifted absorption for 1, al-
though 1 seemingly possesses more extended conjugation
framework than Mes3B. Importantly, the reactivity strength
of the boron atoms in 1-2 is much lower than that inMes3B,
despite the fact that the tri-coordinate boron centers of 1-2
are completely naked. The interesting and abnormal phe-
nomenon is caused by the strong p-π electronic interactions,
that is, the empty p-orbital of boron center is partly filled by
π-electron of the neighbor carbon atoms in 1-2, which are
confirmed by the analysis of Laplacian of the electron
density and natural bond orbitals. Furthermore, the negative
electrostatic potentials of the boron centers in 1-2 also
interpret that they are not the most preferred sites for in-
coming nucleophiles. Moreover, it is also found that the

planar compounds 1-2 can act as promising electron
transporting materials since the internal reorganization en-
ergies for electron are really small.
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Introduction

Organic conjugated oligomers and polymers have stirred
great attention for several decades due to their wide appli-
cations in the field of organic light-emitting diodes
(OLEDs), as well as fluorescent probes, nonlinear optics,
organic field-effect transistors (OFETs) [1, 2]. The fine-
tuning of the photophysical properties and emission charac-
teristics has established them as an important class of new
materials with intriguing properties. In these issues, the
incorporation of the main-group elements into the organic
conjugated materials provides an opportunity to modify the
properties of the luminescent systems, since the interactions
between the atomic orbitals of main-group elements and the
π-conjugation system endow the organic materials with
promising properties [3–8]. In this regard, one of the most
appealing aspects is the incorporation of the electron-
deficient boron element into organic conjugated structures,
which has emerged recently as promising materials for
OLEDs and nonlinear optics [9–14]. In addition to the
four-coordinate boron complexes, the three-coordinate
organoboron compounds have demonstrated their applica-
tion potentials in the real word [15–22]. The availability of
the empty pπ orbital on the boron center and the extended π-
system enable triarylboranes to show unusual optical and
electronic properties. In resent years, many efforts have
been devoted to designing and investigating the three-
coordinate organoboron systems with novel properties
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[23–25]. For instance, Yamaguchi and co-workers have
recently shown that triarylboranes can be used as effective
fluorescent sensors for Lewis donors such as fluoride [26,
27]. Shirota, Wang, Jäkle, and others have carried out ex-
tensive studies on the luminescent triarylboranes and have
demonstrated their potential as effective emitters and
electron-transporting materials [28–36].

In general, it is well known that the three-coordinate
boranes are normally unstable toward hydrolysis by mois-
ture. Therefore, the electron-deficient boron centers in the
three-coordinate boranes need to be protected from external
nucleophilic attack by using bulky substituents, such as
phenyl, and 2,4,6-trimethylphenyl (mesityl) group.
Kawashima and co-workers have synthesized several high-
efficiency ladder-type azaborines using mesityl substituent
to protect tri-coordinate boron atoms [37]. Moreover, Wag-
ner and co-workers recently synthesized 9,10-dianthryl-
9,10-dihydro-9,10-diboraanthracene with 9-anthyl moieties
protecting boron atoms, and proved their good stability toward
air and moisture [38]. Recently, Yamaguchi et al. reported a
group of planarized triarylboranes, which exhibits completely
planar geometries and has no bulky substituents for protecting
the naked boron centers [39, 40]. To our surprise, these
compounds are very stable toward moisture regardless of the
naked boron centers, which is in sharp contrast to the tradi-
tional triarylboranes. Piers et al. proposed that the enforced
planarity of the triarylboranes may be an effective mean of
stabilizing kinetically naked boron centers [41]. However, the
origin of the stability of the planarized triarylboranes is still
unclear for researchers. Therefore, it is essential to disclose the
planarity effects on the photophysical properties and chemical
reactivities of triarylboranes for an in-depth understanding of
the structure-property relationships, thus designing stable
functional materials.

Currently, quantum chemistry investigations have proved
to be an important avenue in revealing the origin of chem-
ical and physical properties and to assist in designing new
materials with ideal properties [42–46]. Therefore, in this
work, a systematically theoretical study was performed to
reveal the planarity effects on the photophysical properties
of triarylboranes, and to provide insight into the origin of the
stability of the planarized triarylboranes. Specifically, the
reported compounds 1 and 2 (Fig. 1) were chosen as models,
and conventional twisted compound Mes3B (Fig. 1) was
also considered for reference and comparison. Their geo-
metric and electronic structures, optical spectra, orbital com-
ponents, ionization energies (IEs), electron affinities (EAs),
internal reorganization energies (λint), Fukui functions, con-
densed and local softness, and electrostatic potentials were
explored using density functional theory (DFT) and concep-
tual DFT calculations to provide insight into the structure-
property relationships and to understand the origin of the
lowered reactivity of 1-2 toward nucleophiles.

Computational details

All calculations were performed using the Gaussian 09
package [48], unless otherwise stated. Comparative molec-
ular structural calculations at the B3PW91/6-311+G(2df,2p)
and B3PW91/6-31G(d,p) levels were carried out for 1. The
largest difference between the bond lengths of the two levels
is less than 0.005 Å, indicating that the 6-31G(d,p) basis set
used in this work is accurate enough. Therefore, the equi-
librium structures of the studied compounds were optimized
based on the experimental crystal structures [39, 49] using
the B3PW91/6-31G(d,p) level for the sake of time efficien-
cy. Harmonic vibrational frequencies were calculated fol-
lowing the optimizations to ensure that real minima were
obtained. All the calculations were carried out without any
symmetry constraints. The absorption spectra were system-
atically calculated by TD-DFT method at B3PW91/6-311+
G(2d,p) level within the nonequilibrium polarizable contin-
uum model (PCM) approach simulating the solvent effects
(tetrahydrofuran, THF). In addition, the Fukui function [50,
51], local softness [52], dual descriptor [53], and Laplacian
of the electron density were computed at B3PW91/6-
31G(d,p) level through code Multiwfn 2.6 [54, 55] and their
definition were summarized in Supporting information in
detail. Generally, the adopted basis set affects the computed
results of the Laplacian of the electron density. Luger et al.
have demonstrated the influences of the basis sets on the
calculated results of the Laplacian, i.e., the more extended
the basis is the more charge concentration is found in the
bond. However, the computed values though different basis
sets follow the same tendency within the studied compounds
[56]. Therefore, the calculated results of Laplacian using
B3PW91/6-31G(d,p) can provide reliable tendency for the
studied compounds. The condensed descriptors, including
condensed Fukui function, condensed softness, and con-
densed electrophilicity were calculated at B3PW91/6-
31G(d,p) level using CHELPG scheme [57]. The electro-
static potentials (ESPs) for the studied compounds were
computed at B3PW91/6-31G(d,p) level and were visualized
using WFA Surface Analysis Suite [58]. The electronic
configuration of boron centers were analyzed by natural
bond orbitals (NBO) at B3PW91/6-31G(d,p) level.

Results and discussion

Geometric and electronic structures

The selected geometrical parameters optimized at the
B3PW91/6-31G(d,p) level in gas phase together with the
available X-ray crystal diffraction data are summarized in
Table S1 (in Supporting information). The atomic labeling
scheme is shown in Fig. 1. The relative errors between the
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optimized bond lengths of Mes3B, 1 and 2 and the corre-
sponding experimental data are no more than 0.8 %, 0.7 %,
and 0.7 %, respectively. Such discrepancies between the
calculated and the experimental data are acceptable, indicat-
ing the B3PW91/6-31G(d,p) level can provide accurate
prediction of the geometric structures. Notably, the bond
length of B-C1 of 1 and 2 (1.523, 1.525 Å, respectively) is
much shorter than that of Mes3B (1.583 Å), indicating
planarity strikingly impact the geometries of 1 and 2. Fur-
thermore, the significantly shorter bond lengths for B-C may
be indicative of the strong interaction of the atomic orbitals
for boron and carbon atoms in 1-2 (vide infra).

To evaluate preliminarily the effect of constraint planarity
on the electron distribution in frontier molecular orbitals
(FMOs), Fig. 2 shows the plots of highest occupied molec-
ular orbital (HOMO) and the lowest unoccupied molecular
orbital (LUMO), energy levels and the energy gaps for

Mes3B, 1 and 2 at their optimized S0 geometries by
B3PW91/6-31G(d,p) level in vacuum. As shown in Fig. 2,
the distribution of HOMOs and LUMOs for Mes3B, 1 and 2
present similar features. The LUMOs mainly locate on the
center boron atom and phenyl fragments, while HOMOs are
somewhat localized on the phenyl fragments for the three
compounds. Nevertheless, from the twisted compound
Mes3B to the planar compounds 1-2, their FMO energy
levels are strikingly different. For 1, the LUMO level is
similar to that of Mes3B, which is consistent with the
experimental result [39]. However, the HOMO level is
significantly lowered as compared to that of Mes3B, al-
though the conjugation of 1 seems to be more extended than
that of Mes3B. For 2, the LUMO level is remarkably
lowered, owing to the fact that 2 comprises two boron atoms
which inherently hold the strong electron-withdrawing
property. The HOMO level is slightly elevated compared

Fig. 1 The molecular
structures of compounds
Mes3B, 1 and 2 and their
numbering scheme

Fig. 2 The illustration of the
orbital plots, the orbital energy
levels, and the HOMO-LUMO
energy gaps for compounds
Mes3B, 1 and 2 at their
optimized S0 geometries in
vacuum at B3PW91/6-31G(d,p)
level. The molecular orbital
plots were obtained with an
isosurface of 0.033 a.u. using
ChemCraft [47]
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with that of 1, since the conjugation plane is extended.
However, the HOMO of 2 is still much lower than that of
Mes3B. The significantly lowered HOMO for 1-2must have
close relationship with the planarity effects, which can be
apparently characterized by the perturbation to the electron
cloud distribution of HOMO for 1. This interesting feature
will be further revealed at the later section.

Absorption spectra and transporting properties

The absorption spectra calculated at PCM(THF)-B3PW91/6-
311+G(2d,p) level were listed in Table 1. Moreover, to obtain
more accurate results, a series of representative functionals
including B3LYP [59, 60], B3PW91 [61–65], PBE0 [66–68],
BMK [69], CAM-B3LYP [70], B971 [71], andM06 [72] were
tested, taking 1 as an example. The calculated data and the
experimental result collected in Table S2 (in Supporting in-
formation) show that B3PW91 provides the most accurate
result, thus B3PW91 was adopted for the studied compounds.
The calculated absorption wavelengths and the variation
trends of the three compounds are in good agreement with
experimental results, confirming that the adopted methods are
reliable. The largest absorption lengths of the three com-
pounds all originate from S0→S1 transition, mainly corre-
sponding to the electron promotion from HOMO to LUMO.
The largest absorption wavelength of 1 (313.3 nm) is blue
shifted compared to that ofMes3B (352.9 nm), demonstrating
the perturbation of conjugation caused by planarity effects. 2
shows a strikingly red shifted absorption band than those of 1
and Mes3B, which can be explained by its narrow band gap.
Consequently, planarity effects exert pronounced influence on
the optical properties of 1-2.

Ionization energies (IEs), electron affinities (EAs), and
internal reorganization energies for hole (λint

+) and electron
(λ�

int) ofMes3B, 1 and 2 have been calculated at B3PW91/6-
31G(d,p) level to evaluate their transporting properties, and
the results were listed in Table 2. From the computed results,
the values of IEs for Mes3B, 1 and 2 are relatively large,
manifesting that it is rather difficult for hole injection due to
the high barrier of injection [73]. Therefore, 1 and 2 can be
used as potential hole-blocking materials in the OLEDs. In
addition, the values of EAs for 1 and 2 are small, indicating

the good ability of catch electron. Especially, it is important
to note that the difference between the vertical and adiabatic
IEs (EAs) for 1 and 2 is much smaller than that of Mes3B.
This fact implies that after gaining (or losing) electron, 1 and
2 undergo a smaller structural relaxation thanMes3B, which
is very important for the charge mobility. On the other hand,
the planar configurations normally facilitate charge transport
since they tend to prefer the tightly-stacked packing motifs
and strong intermolecular electronic coupling [44, 74, 75].
Therefore, planar compounds 1 and 2 will facilitate the
electron transport rather than Mes3B. More importantly,
from the computed results of internal reorganization energy,
1 and 2 both possess conspicuously smaller reorganization
energies for electron (0.083, 0.116 eV for 1 and 2, respec-
tively) than that of Mes3B (0.212 eV). The values of λ�

int for
1-2 are even lower than those of perylene bisimide (PDI)
derivatives (ca. 0.3 eV, obtained at B3LYP/6-31G(d,p) lev-
el) [76], which are typical electron transporting materials.
This conceivably supports that 1 and 2 could act as better
electron-transport materials. However, three-coordinate bo-
ranes are normally unstable due to the reactivity of the
electron-deficient boron atoms. Therefore, the chemical re-
activities of the 1-2 and the reference compound Mes3B
were characterized in detail in the next section.

Reaction activity

In recent years, within the context of DFT, many useful and
important reactivity indices, such as Fukui function, elec-
tronegativity, hardness, and softness, have provided reliable
interpretations and predictions of chemical reactivity sites
and the mechanism of the chemical reactions [77–86]. To

Table 1 Calculated absorption (λabs, nm) wavelengths, excitation
energies (Ex, eV), oscillator strengths f, and dominant excitation char-
acter of Mes3B, 1 and 2 together with experimental results (λexp., nm).

Calculations were performed at PCM(THF)-TD-B3PW91/6-
311+G(2d,p)//B3PW91/6-31G(d,p) level

Compound Transition λabs Ex f Compositiona λexp.
b

Mes3B S0→S1 352.9 3.513 0.136 H→L (98 %) 332

1 S0→S1 313.3 3.957 0.108 H→L (95 %) 320

2 S0→S1 370.4 3.347 0.212 H→L (97 %) 377

a H denotes HOMO and L denotes LUMO bMeasured in THF, ref. [39]

Table 2 The calculated vertical and adiabatic ionization energies (IEs)
and electron affinities (EAs), internal reorganization energies for hole
(λint

+) and electron (λint
-) of compounds Mes3B, 1 and 2. All values in

eV

Compound IEv IEa EAv EAa λint
+ λint

−

Mes3B 7.288 7.158 0.556 0.447 0.260 0.212

1 7.644 7.583 0.376 0.417 0.124 0.083

2 7.347 7.296 1.054 1.111 0.106 0.116

3440 J Mol Model (2013) 19:3437–3446



find the most preferred site for nucleophilic attack, the dual
descriptor Δf, Fukui function and local softness toward
nucleophiles (f+ and s+) were calculated at B3PW91/6-
31G(d,p) level using code Multiwfn 2.6 [54, 55] and the
results were illustrated in Fig. 3. All the plots of Δf, f+, and
s+ show that the maximum site is on the boron atoms for the
three compounds, demonstrating the reactivity of boron
atoms for nucleophilic attack. However, the contribution
from the boron center to the Fukui function and local soft-
ness clearly decreases from Mes3B to 1-2, which is indica-
tive of the lowered reactivity toward nucleophiles for the
latter two compounds. This is in good agreement with the
experimental results. Furthermore, it is observed from the
plots of Δf that Mes3B shows evidently negative Δf (fa-
vored for electrophilic attack) regions at C1 species, while
those in 1-2 are remarkably small, suggesting Mes3B also
shows relatively stronger reactivity toward electrophiles.

To more clearly compare the chemical reactivity strength of
the boron centers, a series of condensed descriptors for reac-
tivity, including condensed Fukui function, condensed soft-
ness, and condensed electrophilicity has been computed using
CHELPG scheme [57]. Generally, the condensed reactivity
descriptors are sensitive to the adopted method and population
partitioning scheme. From the previous works, the choice of
DFT methods based on exchange correlation functional is

crucial for the calculation of the condensed descriptors [78].
In 2002, Subramanian et al. had investigated the effects of the
basis set and population scheme on the results of the con-
densed Fukui functions [87]. Their results showed that
CHELPG is a reliable scheme and could provide precise
reactive site with less dependency on the basis sets. Therefore,
all the condensed descriptors were calculated at B3PW91/6-
31G(d,p) level for the sake of computational cost. The con-
densed softness, which combines local (atomic) and global
information for a molecule, is strikingly important for the inter-
pretation of reactions for the same sites in different molecules
[88]. It has been found that for frontier orbital controlled soft-
soft interactions, the increasing condensed softness of the con-
tact atom will result in an increase of the chemical reactivity
[81]. From Table 3, evidently, the reactivity of the boron atom
forMes3B is much higher than those of 1 and 2, since the values
of the condensed softness are much larger for boron center in
Mes3B. The reactivity of the boron atoms for nucleophilic attack
decreases in the order ofMes3B > 1 > 2. This feature can also be
reflected by the atomic charge values (q) for the boron atom. The
atomic charge ofMes3B is more positive than 1-2, demonstrat-
ing the stronger electrostatic attraction to the incoming nucleo-
philes. Moreover, Mes3B presents a condensed electrophilicity
value of ω+(B) = 0.593 at boron center. However, the constraint
planarity decreases the condensed electrophilicity power of

Fig. 3 The maps of dual
descriptor (Δf), Fukui function
(f), and local softness (s) toward
nucleophilic attack for Mes3B,
1 and 2. The isosurfaces surface
of Δf, f+, and s+ is 0.0032,
0.0032, and 0.0003 a.u.,
respectively. For the plots of
Δf, purple is positive zone and
blue is negative zone
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boron center from 0.593 in Mes3B to 0.506 in 1. Note that the
condensed local electrophilicity for boron atom is mainly de-
rived by change in the condensed Fukui function. Consequently,
the boron centers of 1-2 show relatively lower reactivity toward
nucleophiles compared to that ofMes3B, which agree well with
the experimental findings.

It is well-known that the three-coordinate boranes nor-
mally need bulky substituents to protect the electron-
deficient boron atom from nucleophilic attack. Surprisingly,
the boron centers in 1-2 are more stable toward nucleophilic
attack than that inMes3B according to the calculated results,
although the empty pπ orbital of the boron center is
completely naked. To reveal the origin of this interesting
and abnormal phenomenon, we will next look at the
Laplacian of the electron density and electrostatic potential.

Laplacian of the electron density and electrostatic potential

To unveil the origin of the lowered reactivity of the boron
centers in 1-2, the components of their LUMOs were first
analyzed and the result was plotted in Fig. 4. As discussed

above, the boron center makes negligible contribution to the
HOMO, while its contribution to LUMO is strikingly dif-
ferent for Mes3B, 1 and 2 (see Fig. 2). Figure 4 shows that
the contribution of the boron is greatly reduced from Mes3B
to 1. Turning from 1 to 2, the contribution of the boron
atoms to the LUMO is slightly higher, owing to the fact that
2 has two boron atoms. Note that the contribution of boron
for 2 is still smaller than that for Mes3B, again proving that
the planar configurations facilitate the extension the π-
conjugation electron and stabilize the empty p orbital of
the boron center.

Laplacian of the electron density r2ρðrÞ is a useful tool
for characterizing bonding interactions [89–94]. The inves-
tigation of the Laplacian of electron density could also
provide insight into the electronic properties of atoms and
molecules, and allow for useful predictions of chemical
reactivity [95–99]. In general, regions where the Laplacian
is negative reflect the charge is locally concentrated, which
are characteristic of covalent bonding interactions. Con-
versely, regions where the Laplacian is positive indicate
the charge is depleted, which are typical of closed-shell
interactions. For the sites with negative Laplacian, they tend
to deliver electronic charge and reactive toward electrophilic
reactants, while those with positive Laplacian, they are apt
to accommodate extra electronic charge and reactive toward
nucleophilic reactants [93].

The Laplacian of the electron density shown in Fig. 5 has
been computed at B3PW91/6-31G(d,p) level using code
Multiwfn 2.6 [54, 55]. In addition, Wiberg bond index
(WBI), which is a useful description of delocalization
[100–102], was also computed to gain further insights into
the bonding situation and the results were collected in Table
S3 (Supporting information). It is readily seen from the plots
of Fig. 5 and Fig. S1 that the carbon atoms of the phenyl
ring are sp2 hybridized and the electron-rich regions locate
around carbon atoms for Mes3B, 1, and 2. The electron-
depleted region (electron-poor zone) is found in center bo-
ron atom, confirming the electron-deficient characteristic of
boron center. It is evident that the boron center is stabilized
by the charge-concentrated neighbor carbon atoms. Interest-
ingly, the extension of the charge concentration region in B-
C1 bond for 1 and 2 is much greater than that for Mes3B,

Table 3 The computed results of chemical hardness (η, eV), chemical
potential (μ, eV), electrophilicity index (ω, eV) and global softness (S,
eV−1) for Mes3B, 1 and 2. Condensed Fukui functions (f+, a.u.),

softness (s+, a.u.eV−1), and electrophilicity (ω+, a.u. eV) of the contact
boron atom using CHELPG method are also listed. All the values were
computed at B3PW91/6-31G(d,p) level

Compound η μ ω S q(B) f+(B) s+(B) ω+(B)

Mes3B 6.841 −3.868 1.093 0.146 0.710 0.542 0.079 0.593

1 7.268 −4.010 1.106 0.138 0.344 0.457 0.063 0.506

2a 6.293 −4.201 1.402 0.159 0.307 0.243 0.039 0.341

a For 2, the related condensed values for B2 are same to B1

Fig. 4 The lowest unoccupied molecular orbital (LUMO) components
(including three parts: boron, phenyl, and others, in percent) for com-
pounds Mes3B, 1 and 2 at optimized S0 geometries in vacuum at
B3PW91/6-31G(d,p) level
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manifesting that the interactions between boron center and
neighbor carbon atoms are much stronger for 1 and 2. The
relatively stronger interatomic orbital interactions in 1-2 also
can be indicated by the larger values of WBI for B-C1
(0.949, 0.951, 0.888 for 1, 2, Mes3B, respectively). More
importantly, the delocalization of π electron in C1 atoms
into the vacant p orbital in boron center can be further
proved by the calculation results of natural bond orbitals
(NBO) analysis. The electronic configuration of boron atom
is 2s(0.62)2p(1.47) for Mes3B, while those for 1-2 are
2s (0 .57)2p (1 .68) , 2 s (0 .58)2p (1 .65) (B1 in 2 ) ,
2s(0.58)2p(1.65) (B2 in 2), respectively. The net electrons
for boron atoms in 1-2 are clearly larger than that in Mes3B,
suggesting that the empty pπ orbital has been partly filled for

1-2. Therefore, the stabilization effects provided by charge-
concentrated C1 species are much greater in 1-2 than those
in Mes3B. This feature is strikingly important for the
lowered reactivity toward nucleophiles for 1-2, whose boron
centers is naked without any protection of bulky substituents
and shows higher stability toward nucleophilic attack.

For carbon atoms C7 and C8 in 1 and 2, the extension of
charge concentrated zone for C7-C3 and C8-C2 is smaller
than the bonds of the phenyl ring (such as C2-C4, C4-C6,
etc.). The related bonds associated to C7 and C8 do not
participate in the conjugation system, since they have single
bond character as manifested by WBI values which are close
to 1.0. Importantly, for the three compounds the extension of
charge concentrated region in the bonds of C1-C2 and C1-
C3 is different from those of C2-C4, C3-C5, C4-C6, and
C5-C6, where the former are relatively smaller than the later.
Moreover, the computed nucleus independent chemical shift
(NICS) values at the geometric center phenyl rings calcu-
lated at B3LYP/6-31+G(d,p) level for 1 and 2 (−6.78 and
−6.57) are much higher than that of benzene (−8.04) [103,
104]. These characteristics manifest boron atoms which
strikingly disturb the conjugation system. The charge-
depleted boron atoms in 1 and 2 clearly have no contribution
to the conjugation system. In converse, the empty pπ orbital
of boron center needs to be stabilized by the conjugation
system. Coincidentally, the planar configuration of 1 and 2
is beneficial for the boron center extract electron from

Fig. 5 Contour maps of the Laplacian of the electron density (r2ρ) for
Mes3B (top) and 1 (bottom), in the plane defined by atoms B, C1 and
C2 (The Laplacian of 2 resembles that of 1, hence the related plots was
presented in supporting information). The dash lines denote negative
Laplacian, while the solid lines denote positive Laplacian

Fig. 6 The electrostatic potential (in a.u.) of compounds Mes3B,
Ph3B, 1 and 2 calculated at B3PW91/6-31G(d,p) level. The electro-
static potential values are mapped on the surface of electron density
(0.001 a.u.) and created with WFA Surface Analysis Suite [58]. Color
range: blue <−0.017, green −0.017 ─ 0, yellow 0 ─ 0.010, red >0.010
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neighbor carbon atoms. This also can be characterized by
the relatively smaller value of the EAv for 1 (0.376 eV for 1
and 0.556 eV for Mes3B), which suggests the electron-
deficient boron atom has been stabilized. Therefore, the
HOMO level of 1 is lowered compared to that of Mes3B,
although they possess similar conjugation framework (vide
supra). In addition, to clarify the contribution of the conju-
gation and inductive effects to the lowered HOMO of 1 and
2, the simplest arylborane compound, C6H5BH2, was calcu-
lated. The planar and twisted (the BH2 subunit is perpen-
dicular to benzene plane) C6H5BH2 model and the
calculation details were presented in the Supporting infor-
mation (Fig. S2). The HOMO level is −7.14 and −6.64 eV
for the planar and twisted model, respectively, which exhibit
similar tendency as 1 and Mes3B. For the planar model, the
electronic configuration of boron atom is 2s(0.85)2px(0.71)
2py(0.90) 2pz(0.14), while the twisted model is 2s
(0.87)2px(0.72) 2py(0.02) 2pz(0.88). This feature indicates
that the conjugation effects of the boron center are more
important for the lowered HOMO.

Additionally, within the framework of hard and soft acids
and bases of Pearson [105, 106], the electrostatic potential
(ESP), which is frequently used to predict the reactive sites
for hard-hard interactions and the packing motifs of a crystal
[107–110], has been computed (at B3PW91/6-31G(d,p) lev-
el in vacuum) for Mes3B, 1 and 2. The most positive
(negative) regions of ESP are generally preferred for nucle-
ophilic (electrophilic) attack. From the plots of Fig. 6, the
hydrogen atoms present the most positive ESP regions,
while the conjugated systems (phenyl rings) show the most
negative regions for the three compounds. Interestingly, the
boron centers of the planar compounds 1-2 take negative
electrostatic potential values, which is less negative than
those of conjugated systems. This proves that the boron
centers are not the most preferred sites for nucleophilic
attack, in line with the above discussions of the reactivity
descriptors. It is well-known that the boron center of Mes3B
is well protected by methyls in mesityl groups. The positive
ESP regions near the boron center in Mes3B are probably
attributed to the hydrogen atoms in methyl groups. There-
fore, the ESP of the triphenylboron (Ph3B in Fig. 6) was
also computed to distinctly compare the ESP behaviors of
the boron centers. From Fig. 6, the boron center of the Ph3B
clearly presents a positive ESP value, demonstrating the
high reactivity toward nucleophiles. This further confirms
that the planarity effects strikingly reduce the strength of the
chemical reactivity for boron atoms toward nucleophiles.

Conclusions

The aim of the present investigation was to assess the
planarity effects on the photophysical properties and the

chemical reactivities of three-coordinate organoboron com-
pounds 1-2 as compared to the twisted reference compound
Mes3B. To this end, within the framework of DFT and
conceptual DFT the geometric and electronic structures,
absorption spectra, ionization energies and electron affini-
ties, chemical reactivity indices and electrostatic potentials
have been calculated. The results can well reproduce the
experimental measurements. With the planarity configura-
tions, 1 exhibits significantly lower HOMO level than
Mes3B, owing to the stronger electronic induction effect of
boron center. The characteristic directly induces a blue
shifted absorption for 1 compared with Mes3B, although 1
seemingly possesses more extended conjugation framework
than Mes3B. 1-2 can act as promising electron transporting
materials since their reorganization energies for electron are
really small. Interestingly, the completely naked boron
atoms of 1-2 are more stable toward nucleophiles than the
well protected one in Mes3B according to the calculated
chemical reactivity indices. This interesting and abnormal
phenomenon can be explained by the stronger electronic
interactions between boron center and neighbor carbon
atoms in 1-2, which are confirmed by the analysis of
Laplacian of the electron density and NBO. Furthermore,
the negative electrostatic potentials of the boron centers in
1-2 also rationalized the lowered chemical reactivity.
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